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Abstract

Sleep apnea is a serious sleep disorder in which an in-
dividual experiences multiple obstructive apnea events, in
which the throat muscles block airflow and prevents breath-
ing of more than eleven seconds. In recent years, Machine
Learning methods using biometric signals have proven to
be useful in detecting obstructive apnea events, potentially
reducing the cost of diagnosis, and reducing the strain on
our healthcare system. This paper introduces MorphNet,
a 1D-CNN deep learning method for per-minute sleep ap-
nea detection using blood oxygen saturation (SpO2) signal
time series data from the Apnea-ECG dataset. The pro-
posed method uses one-dimensional Convolutional Neural
Networks in order to extract features from minute intervals
of SpO2 data. The model created exhibits an accuracy of
97.47% with a precision of 98.92%, recall of 97.84%, and
f1 score of 0.9818. The proposed model is compared against
several other state of the art documented machine learning
algorithms to classify obstructive sleep apnea.

1. Introduction

Obstructive sleep apnea is a serious sleep disorder that
afflicts roughly 936 million people worldwide [1]. It is
characterized by episodes of stopped periods of breathing,
and has symptoms of increased fatigue, daytime drowsi-
ness, and increased levels of brain fog. In recent years,
Machine Learning techniques have been seen as a solu-
tion to solve the problem of classifying obstructive sleep
apnea. Past approaches use more traditional machine learn-
ing algorithms, such as Support Vector Machines and Lo-
gistic Regression [7], but in recent years breakthroughs in
computing power and network architectures has led to neu-
ral network models proving to be very successful in clas-
sifying obstructive sleep apnea events. Specifically, break-
throughs in Convolutional Neural Networks and Recurrent
Networks like Long-Short-Term-Memory Neural Networks

have proven to be effective in capturing the temporal rela-
tionships in signals useful to detect sleep apnea, such as
electrocardiogram (ECG) signals, or blood oxygen satu-
ration levels (SpO2) [4] [3]. While obstructive sleep ap-
nea has the potential to be a serious condition, most of
the definitive symptoms occur during sleep, which makes
it hard for individuals to self-diagnose sleep apnea. Defi-
nite diagnosis can be done, but usually through an expen-
sive (300-1000$) [9] and laborous polysomnography with
a physician. This problem motivates the creation of Mor-
phNet, a lightweight 1D-CNN model used to detect obstruc-
tive sleep apnea on a one minute basis using SpO2 signals,
designed to be usable in most IoT devices, most notably
smartwatches.

In recent years, most smartwatches, including Apple,
Samsung, and FitBit smartwatches, allow for the recording
and monitoring of SpO2 levels. Recording SpO2 levels in
smartwatches is non-invasive and requires minimal effort,
which motivates the use of SpO2 as our variable of interest
for classifying obstructive sleep apnea. Furthermore, SpO2
levels are useful in detecting reduced airflow through a drop
in blood oxygen levels, which is potentially useful for de-
tecting sleep apnea events. Other models use multiple sig-
nals in detecting obstructive sleep apnea, especially heart
signals through electrocardiogram (ECG) tests [2], and the
detection of physical movements in bed [6]. However, many
approaches have found success solely using SpO2 to clas-
sify sleep apnea [5], which led to our decision to focus ex-
clusively on using SpO2 as our variable of interest.

2. Methods
2.1. Database

The data was collected from the Apnea-ECG
Database [8]. It contains 70 overnight biometric recordings
of 35 individuals using gold-standard polysomnography
techniques. The database primarily focuses on ECG
recordings, with ground truth apnea labels available for
the test set of 35 overnight biometric readings. It was



Individual Age(yrs) Sex Height (cm) Weight (kg)

a01 51 M 175 102
a02 38 M 180 120
a03 54 M 168 80
a04 52 M 173 121
b01 44 F 170 63
c01 31 M 179 74
c02 37 M 180 83
c03 39 M 184 65

Table 1. Demographic data of the 8 individuals

collected in 2000, and contributed by Dr. Thomas Penzel
of Phillips-University in Marburg, Germany. Because this
database was primarily focused on ECG data, of the 35
biometric recordings, 8 of them include SpO2 data. This
subset of 8 individuals constitute the dataset used in this
report. Demographic details of the individuals are provided
in Tab. 1. The recordings are sampled at 100 Hz, and
broken up into one minute intervals, which are labelled
as apneic or non-apneic, depending on whether or not an
apnea has occurred in the interval. An example of the two
types of intervals are shown in Fig. 1. In our preprocessing,
the data was downsampled to a lower frequency of 10hz
in order to reduce the volume of data, and potential noise
in the measurements. This was done by splitting the data
in chunks of 10 samples and calculating the median to
represent the value, so that each datapoint was of length
600, representing a minute of SpO2 levels, with 10 obser-
vations per second. Any minute interval containing a value
of under 50% SpO2 were assumed to be measurement
errors, considered artifacts, and dropped from the dataset.
In total, we had 3751 minutes, and therefore datapoints of
SpO2 data across the 8 individuals, with 2281 being labels
without apnea, and 1470 being labels with apnea.

Because our dataset was relatively balanced, as the num-
ber of apnea intervals is 39.19% of our dataset, we did not
use any class weights on our loss function or probability
threshholding when training and evaluating our model.

2.2. MorphNet

MorphNet is a novel 1D-CNN model which uses convo-
lution filters in order to extract temporal relationships in the
SpO2 data to detect drastic fluctuations or drops, which are
useful in classifying apneas. The model takes in a minute
of SpO2 data as input of shape (1x600), which is first nor-
malized, which helps increase the training speed. After, the
normalized inputs are fed into two sequential convolutional
blocks, each containing a convolutional layer, a ReLU layer,
and a max pooling layer. The convolutional layer outputs
are of shape (1, 16) and (16, 32), with kernel sizes of 200
and 100, in each convolutional block respectively. Each

Figure 1. Example SpO2 levels for an apnea and non-apnea inter-
val. Note that the apnea interval is much more erratic and fluctu-
ates significantly more than a non-apnea interval

Figure 2. The proposed MorphNet architecture

convolutional layer is of stride 1, with zero padding. The
max pooling layers both have a kernel size and stride length
of 2. After the two convolutional blocks, the output is flat-
tened, and sent through two fully connected layers of size
4800 and 1200 respectively, before finally being sent to 2
output nodes with a sigmoid activation function to perform
binary classification. The full model architecture can be
seen in Fig. 2.

2.3. Training

The data was partitioned into a train-test split of 80/20.
The model was trained on a Intel(R) Core(TM) i7-10700
CPU, 16 GB of RAM, and a NVIDIA RTX 3070 GPU with
8 GB of memory. The model was trained for 25 epochs,
with a batch size of 32, and a learning rate of 5e-6. The
loss function used was Binary-Cross Entropy loss. All code
for the project was written in Python using Pytorch. Further
details about the hyperparameters and model architecture
can be seen in Tab. 3 and Tab. 2, respectively.



Layer Parameters

Input -
BatchNorm -
Convolution in=1, out=16, kernel=200x1
ReLU -
Max Pool kernel size=2, stride=2
Convolution in=16, out=32, kernel=100x1
ReLU -
Max Pool kernel size=2, stride=2
Flatten -
Dropout p=0.2
FC1 in features=4800, out features=1200
ReLU -
Dropout p=0.2
FC2 in features=1200, out features=1
Sigmoid -
Output -

Table 2. Detailed description of the MorphNet architecture

Hyperparameter Value

Train/Test Split 80/20
Optimizer Adam
Learning Rate 5e-6
Loss function Binary Cross Entropy
L2 Regularization 1e-4
Epochs 25
Batch Size 32
Dropout Prob in last FC layer 0.2
Activation Function ReLU

Table 3. Hyperparameters used in training MorphNet

3. Results
Our model is trained to perform binary classification

given a minute long interval of SpO2 time series data. Mor-
phNet achieved an accuracy of 97.47% on the test set, with
a precision of 98.92%, recall of 97.84%, and F1 score of
0.9818. The resulting confusion matrix and ROC curve
made from running our model on the test data can be seen in
Fig. 3, and Fig. 4, respectively. A comparison between Mor-
phNet and many state-of-the art models, using a variety of
different databases and machine learning methods (LSTM,
SVM, 2D-CNN), can be seen in Tab. 4. As seen from Tab. 4,
our proposed method performs better compared to many
state of the art models. Although direct comparison be-
tween models is hard, as most papers use differing datasets,
MorphNet notably performs better than the model from Dey
et al. [2], which uses the same dataset, and a similar method.
Furthermore, while other implementations use more com-
plex network architecture such as 2D-CNN and recurrent

Author Method Dataset Accuracy Recall

Eid et al. [3] LSTM Charité Apnea 85.10% 90.00%
Ma et al. [7] SVM UCD Apnea 90.20% 87.60%
Wang et al. [11] CNN UCD Apnea 71.80% 26.60%
John et al. [4] 1D-CNN UCD Apnea 99.56% 96.05%
Dey et al. [2] 2D-CNN Apnea-ECG 94.33% 93.88%
Ours 1D-CNN Apnea-ECG 97.47% 97.84%
Ours (pruned) 1D-CNN Apnea-ECG 96.14% 94.47%

Precision =
TP

TP + FP
= 98.92% (1)

Recall =
TP

TP + FN
= 97.84% (2)

F1 Score = 2
Precision×Recall

Precision+Recall
= 0.9818 (3)

Table 4. Comparison of MorphNet to other state-of-the-art models

Figure 3. Confusion matrix of MorphNet on the Testing set

models like LSTMs, as well as many different variables,
and such as ECG alongside SpO2, or uses movement or
other biometric data, our model solely uses SpO2 data and
a simple 1D-CNN architecture.

Despite this, it is comparable or outperforms more com-
plex models that incorporate many variables, while re-
quiring significantly less data and computational resources.
This makes our model lightweight, while still maintaining a
good accuracy, making our model ideal for deployment into
IoT devices. Furthermore, our choice of variable of SpO2
makes our model exceptionally interpretable, and able to be
integrated to be used in supporting professional diagnosis.



Figure 4. ROC curve of MorphNet on the Testing set

3.1. Model Pruning and Quantization

Our original model can be stored using 24.5 MB. Stor-
age in IoT devices is limited, so it is crucial that we optimize
the size of our model to make it fit within the confined stor-
age of IoT devices. We do this with quantization and model
pruning, both techniques are used to reduce the size of the
model by removing or rounding model weights. Quantiza-
tion is the process of converting the weights in our model
to lower resolution storages. For example, converting the
weight datatype from 64-bit floats into 8-bit integers. Model
Pruning, on the other hand, is the process of removing a cer-
tain percentage of weights from certain layers. In order to
reduce the size of our model, we incorporate both of these
techniques. Using pruning, we remove 30% of the weights
in the last two fully connected layers of model, and then
convert the weights in the last two fully connected layers
to 8-bit integers. The results of the pruned model on the
test data is shown in Tab. 4. Doing this pruning reduces the
size of our model substantially, reducing our model size to
6.4 MB, making it much more suitable for IoT devices with
storage restraints.

4. Conclusion

In this paper, we introduce a method of per-minute de-
tection of obstructive sleep apnea events using SpO2 levels,
compatible for IoT devices. Our proposed method exhibits
an accuracy of 97.47%, with a precision of 98.92%, Recall
of 97.84%, and F1 Score of 0.9818, with the sparse ver-
sion of the model performing similarly. Given the low stor-
age space of the pruned model, deployment of this model to
IoT sensors like smartwatches is feasible. While databases
that include obstructive apnea data that includes SpO2 lev-
els are limited, work in the future could be done on explor-
ing the efficacy of MorphNet on different polysomnography

databases, such as the University College Dublin Sleep Ap-
nea Database. Future work could also be done in exploring
attention based neural network architectures, such as trans-
formers [10]. More work could also be done implementing
the real-time monitoring system outlined in this paper into
an IoT device capable of extracting real-time SpO2 data,
such as an Apple, Galaxy, or Fitbit smartwatch.
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